Sall4 Is Transiently Expressed in the Caudal Wolffian Duct and the Ureteric Bud, but Dispensable for Kidney Development

نویسندگان

  • Daichi Toyoda
  • Atsuhiro Taguchi
  • Masahiko Chiga
  • Tomoko Ohmori
  • Ryuichi Nishinakamura
چکیده

The kidney, the metanephros, is formed by reciprocal interactions between the metanephric mesenchyme and the ureteric bud, the latter of which is derived from the Wolffian duct that elongates in the rostral-to-caudal direction. Sall1 expressed in the metanephric mesenchyme is essential for ureteric bud attraction in kidney development. Sall4, another member of the Sall gene family, is required for maintenance of embryonic stem cells and establishment of induced pluripotent stem cells, and is thus considered to be one of the stemness genes. Sall4 is also a causative gene for Okihiro syndrome and is essential for the formation of many organs in both humans and mice. However, its expression and role in kidney development remain unknown, despite the essential role of Sall1 in the metanephric mesenchyme. Here, we report that mouse Sall4 is expressed transiently in the Wolffian duct-derived lineage, and is nearly complementary to Sall1 expression. While Sall4 expression is excluded from the Wolffian duct at embryonic (E) day 9.5, Sall4 is expressed in the Wolffian duct weakly in the mesonephric region at E10.5 and more abundantly in the caudal metanephric region where ureteric budding occurs. Sall4 expression is highest at E11.5 in the Wolffian duct and ureteric bud, but disappears by E13.5. We further demonstrate that Sall4 deletion in the Wolffian duct and ureteric bud does not cause any apparent kidney phenotypes. Therefore, Sall4 is expressed transiently in the caudal Wolffian duct and the ureteric bud, but is dispensable for kidney development in mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development, Differentiation and Derivatives of the Wolffian and Müllerian Ducts

The Wolffian ducts (proand mesonephric ducts) are the most important and earliest structures formed during the development of the urogenital system in vertebrates including humans. The Wolffian ducts originate in the prospective cervical region of the young embryo but later migrate caudally inducing the development of the pronephric and mesonephric tubules along their migratory route. In additi...

متن کامل

The transcription factors Etv4 and Etv5 mediate formation of the ureteric bud tip domain during kidney development.

Signaling by the Ret receptor tyrosine kinase promotes cell movements in the Wolffian duct that give rise to the first ureteric bud tip, initiating kidney development. Although the ETS transcription factors Etv4 and Etv5 are known to be required for mouse kidney development and to act downstream of Ret, their specific functions are unclear. Here, we examine their role by analyzing the ability o...

متن کامل

Renal agenesis and hypodysplasia in ret-k2 mutant mice result from defects in ureteric bud development

The c-ret gene encodes a receptor tyrosine kinase that is expressed in the Wolffian duct and ureteric bud of the developing excretory system. Newborn mice homozygous for a mutation in c-ret displayed renal agenesis or severe hypodysplasia, suggesting a critical role for this gene in metanephric kidney development. To investigate the embryological basis of these defects, we characterized the ear...

متن کامل

Renal agenesis and hypodysplasia in ret-k- mutant mice result from defects in ureteric bud development.

The c-ret gene encodes a receptor tyrosine kinase that is expressed in the Wolffian duct and ureteric bud of the developing excretory system. Newborn mice homozygous for a mutation in c-ret displayed renal agenesis or severe hypodysplasia, suggesting a critical role for this gene in metanephric kidney development. To investigate the embryological basis of these defects, we characterized the ear...

متن کامل

Mystery solved: discovery of a novel integrin ligand in the developing kidney

Mutant mice lacking the integrin 8 subunit exhibit variable defects in kidney development with most mutants missing both kidneys. Several lines of evidence indicate that the known extracellular matrix ligands for integrin 8 1 are either dispensable for or not involved in 8 1 signaling during kidney development. This suggests the presence of an unknown ligand. A novel 8 1 ligand, nephronectin, h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013